Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296349

RESUMO

Cell death and proliferation are at a glance dichotomic events, but occasionally coupled. Caspases, traditionally known to execute apoptosis, play non-apoptotic roles, but their exact mechanism remains elusive. Here, using Drosophila intestinal stem cells (ISCs), we discovered that activation of caspases induces massive cell proliferation rather than cell death. We elucidate that a positive feedback circuit exists between caspases and JNK, which can simultaneously drive cell proliferation and cell death. In ISCs, signalling from JNK to caspases is defective, which skews the balance towards proliferation. Mechanistically, two-tiered regulation of the DIAP1 inhibitor rpr, through its transcription and its protein localization, exists. This work provides a conceptual framework that explains how caspases perform apoptotic and non-apoptotic functions in vivo and how ISCs accomplish their resistance to cell death.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação , Proteínas Inibidoras de Apoptose/metabolismo , Morte Celular , Drosophila/metabolismo , Caspases/metabolismo , Proliferação de Células/genética , Células-Tronco/metabolismo
2.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156558

RESUMO

Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.


Assuntos
Técnicas Biossensoriais , Drosophila , Masculino , Animais , Drosophila/genética , Necrose , Apoptose , Espermatogênese
3.
EMBO J ; 42(12): e111383, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140455

RESUMO

Cancer exerts pleiotropic, systemic effects on organisms, leading to health deterioration and eventually to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue, in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. In Drosophila, Ras-induced dysplastic cells upregulate and secrete NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis in the fat body, which is critical for acetyl-CoA generation and systemic metabolism. Supplementation of carnitine or acetyl-CoA ameliorates organismal health under oncogenic stress. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Netrinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Acetilcoenzima A/metabolismo , Transdução de Sinais , Axônios/metabolismo , Fatores de Crescimento Neural/metabolismo
4.
EMBO J ; 42(8): e110454, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36727601

RESUMO

Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Drosophila/metabolismo
5.
PLoS Biol ; 20(4): e3001586, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468130

RESUMO

Many adult tissues are composed of differentiated cells and stem cells, each working in a coordinated manner to maintain tissue homeostasis during physiological cell turnover. Old differentiated cells are believed to typically die by apoptosis. Here, we discovered a previously uncharacterized, new phenomenon, which we name erebosis based on the ancient Greek word erebos ("complete darkness"), in the gut enterocytes of adult Drosophila. Cells that undergo erebosis lose cytoskeleton, cell adhesion, organelles and fluorescent proteins, but accumulate Angiotensin-converting enzyme (Ance). Their nuclei become flat and occasionally difficult to detect. Erebotic cells do not have characteristic features of apoptosis, necrosis, or autophagic cell death. Inhibition of apoptosis prevents neither the gut cell turnover nor erebosis. We hypothesize that erebosis is a cell death mechanism for the enterocyte flux to mediate tissue homeostasis in the gut.


Assuntos
Drosophila , Enterócitos , Animais , Apoptose , Morte Celular , Drosophila/metabolismo , Enterócitos/metabolismo , Homeostase
6.
Cell Rep ; 28(12): 3144-3156.e4, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533037

RESUMO

Under food deprivation conditions, Drosophila larvae exhibit increases in locomotor speed and synaptic bouton numbers at neuromuscular junctions (NMJs). Octopamine, the invertebrate counterpart of noradrenaline, plays critical roles in this process; however, the underlying mechanisms remain unclear. We show here that a glypican (Dlp) negatively regulates type I synaptic bouton formation, postsynaptic expression of GluRIIA, and larval locomotor speed. Starvation-induced octopaminergic signaling decreases Dlp expression, leading to increases in synapse formation and locomotion. Dlp is expressed by postsynaptic muscle cells and suppresses the non-canonical BMP pathway, which is composed of the presynaptic BMP receptor Wit and postsynaptic GluRIIA-containing ionotropic glutamate receptor. We find that during starvation, decreases in Dlp increase non-canonical BMP signaling, leading to increases in GluRIIA expression, type I bouton number, and locomotor speed. Our results demonstrate that octopamine controls starvation-induced neural plasticity by regulating Dlp and provides insights into how proteoglycans can influence behavioral and synaptic plasticity.


Assuntos
Comportamento Animal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Células Musculares/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal , Proteoglicanas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Locomoção , Células Musculares/citologia , Junção Neuromuscular/genética , Proteoglicanas/genética , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...